Water-soluble degradable hyperbranched polyesters: novel candidates for drug delivery?

نویسندگان

  • Chao Gao
  • Yimin Xu
  • Deyue Yan
  • Wei Chen
چکیده

A novel approach to hyperbranched polymers is presented in this work. Hyperbranched polyesters with a large amount of terminal hydroxyl groups are prepared by a one-pot synthesis from commercially available AB-type and CD(n)-type monomers (n >/= 2). In this paper, Michael addition of diethanolamine (CD(2)) or N-methyl-d-glucamine (CD(5)) to methyl acrylate (AB) generates dominantly AD(n)-type intermediates. Further self-condensation of intermediates at higher temperature and in the presence of catalyst gives hyperbranched polyesters. Because of the tertiary amino groups in the backbone and the hydroxyl groups in the linear and terminal units, the resulting hyperbranched polyester is highly soluble in water. Furthermore, the hyperbranched polymer is degradable because of its ester units. So, the water-soluble hyperbranched polyesters might be applied as a novel material for drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers.

The field of specific drug delivery is an expanding research domain. Besides the use of liposomes formed from various lipids, natural and synthetic polymers have been developed to prepare more efficient drug delivery systems either under macromolecular prodrugs or under particulate nanovectors. To ameliorate the biocompatibility of such nanocarriers, degradable natural or synthetic polymers hav...

متن کامل

Nanosized Technological Approaches for the Delivery of Poorly Water Soluble Drugs

      A major hurdle in pharmaceutical formulation is water insolubility of most of drugs affecting their stability and bioavailability. If the drug is also insoluble in organic medium, it is difficult to deliver it in a sufficiently bioavailable form and hence it is a great challenge to formulation researchers to overcome such difficulty. Although some approaches are available for enhancing th...

متن کامل

Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs

A water-soluble, core-multishell (CMS) nanocarrier based on a new hyperbranched polyester core building block was synthesized and characterized towards drug transport and degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS nanocarrier can transport one molecule of dexametha...

متن کامل

Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers.

Highly branched, functionalized polymers have potential to act as efficient drug carrier systems. Dendrimers are ideal candidates among model hyperbranched polymers because of their well-defined structure and high density of functional groups. Using ibuprofen as a model drug, we studied the interaction between the drug and Polyamidoamine (PAMAM) dendrimers (generations 3 and 4 with --NH2 functi...

متن کامل

Physicochemical Characteristics and Biomedical Applications of Hydrogels: A Review

Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2003